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Abstract

A numerical description, based on the Boussinesq equations, is given for the steady free convection ¯ow due to a

point source of heat and heated spheres. We begin with the non-dimensional formulation of the problem for the
point source giving the numerical solution for a wide range of values of the Prandtl number, the remaining
parameter. The analytical description of the temperature and ¯ow ®elds close to the point source includes constants
that are evaluated numerically and are used to obtain the ¯ow ®eld around heated spheres for small Grashof

numbers, and the correction of the Nusselt number, due to free convection, from its heat conduction value. The
numerical solution of the free convection problem over a sphere at moderate and small Grashof numbers is carried
out for Pr=0.72 and 7. Based on the small and large Grashof number descriptions, a correlation expression is

proposed for the laminar ¯ow Nusselt number, covering all Grashof numbers. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The heat leaving hot particles in an unbounded ¯uid

environment is con®ned, due to the buoyancy forces,

to a heated region surrounding the particle and to a

thermal plume above. Under quasi-steady conditions,

the downwards extent or characteristic size, lh, of the

heated regionÐand hence the rate Q of loss of heat of

the particle to the surrounding ¯uidÐis determined by

the balance of the transport of heat by conduction and

by the convective ¯ow. This ¯ow is due only to the

buoyancy forces in the cases considered in this paper

when there is not an externally imposed forced ¯ow.

The analysis of free convective ¯ows and heat trans-

fer from hot particles has received considerable atten-

tion; see, for example, the extended review of Gebhart

et al. [1]. Most of the work refers to the cases, with

large Grashof numbers, when the heat leaving the par-

ticle is con®ned to a thin boundary layer and to the

plume above the particle. The heat transfer in this case

is enhanced above the pure heat conduction value by a

factor of the order of the ratio of the particle size to

the thickness of the boundary layer. Merk and Prins

[2] used an integral method to obtain the relation

between the Nusselt and Grashof numbers in the large

Grashof number limit. Acrivos [3] analysed the case of

large values of the Prandtl number. Potter and Riley

[4] studied the steady boundary layer ¯ow over a

heated sphere using a ®nite di�erence method; the cal-

culation ends in a singularity when reaching the upper

pole, from which the boundary layer erupts into the

plume above the sphere. Additional detailed features

of the singularity at the upper pole were revealed by

Brown and Simpson [5].

In the opposite limiting case of small Grashof num-

bers the size lh of the heated region is large compared

with the body size and, then, the heat transfer is, in
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®rst approximation, determined by conduction for

non-cylindrical bodies of ®nite size. For this reason,
the cases of small Grashof numbers have received less
attention in the literature.
The problem encountered in the description of the

free convection ¯ow at small Grashof numbers is a
singular perturbation problem, as it was understood by
Mahony [6], by Fendell [7], and very clearly by Hieber

and Gebhart [8], who analysed the mixed convection
around a heated sphere at small Reynolds and
Grashof numbers. The ¯ow ®eld, and the correction

due to convection of the heat ¯ux from its heat con-
duction value, can only be obtained with the numerical
solution of the complete equations or using the tech-

nique of matched asymptotic expansions, as in the
analysis of the low Reynolds number past spheres of
Kaplun and Lagerstrom [9]. This is what will be done
in this paper, as we did in the analysis of the free con-

vection ¯ow due to thin heated wires, LinÄ aÂ n and
Kurdyumov [10].
As pointed out by Hieber and Gebhart [8], in

Sections 1.3 and 3 of their paper, there are two main
regions in the free convection ¯ow ®eld around heated
spheres. An inner region, scaled with the radius, a, of

the sphere where the ®rst terms of the expansion of the

¯ow variables in powers of Gr 1/2, the square root of

the Grashof number, are given by solutions of the
Stokes simpli®ed form of the complete ¯ow equations,
without the terms due to the buoyancy forces and the
convective transport of momentum and heat. The

outer boundary conditions for these equations are
obtained by matching with the solution of the com-
plete equations describing the ¯ow in an outer region,

with a scale lh, of the order of aGrÿ1/2, determined by
the balance of heat conduction and the convective
transport resulting from the ¯ow induced by the buoy-

ancy forces. The ¯ow and temperature ®elds in this
outer region are determined by the rate of heat loss Q
by the heated particle independently of its shape and

sizeÐthe radius a in the case of sphere. The heated
particle appears in the low Grashof number limit as a
pure point source of heat when we observe the ¯ow
with the outer scale, because the e�ect of the drag of

the particle in the outer ¯ow ®eld can be neglected in
this limit.
As we shall see below, the temperature variations

(ThÿT1) encountered in the outer region are smaller
than the temperature di�erence (TpÿT1) between the
particle and the ambient ¯uid by a factor of the order

Gr 1/2. Typically ThÿT1<<T1, so that we can use the

Nomenclature

Gr Grashof number
~g gravity
l length

Nu Nusselt number
p variation of pressure from the hydrostatic value
Pr Prandtl number

Q intensity of the point source
r radial coordinate
R cylindrical coordinate

T dimensional temperature
~v velocity vector
Vr, Vy velocity components in the spherical coordinate system
U non-dimensional velocity

Greek symbols
a thermal di�usivity
b thermal expansion coe�cient

l thermal conductivity
t non-dimensional temperature
y angular coordinate
z similarity variable in the thermal plume

O azymutal component of the vorticity
E non-dimensional radius of the sphere
c stream function

n kinematic viscosity
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Boussinesq approximation of the conservation

equations for the description of the outer solution cor-
responding to a point source of heat.
Then, we shall begin in Section 2, with a description

of the numerical solution of the Boussinesq equations
corresponding to the steady, laminar, free convection

¯ow due to a point source of heat. When these
equations are written in non-dimensional form using
the appropriate scales only one parameter, namely the

Prandtl number Pr, is left in the equations and bound-
ary conditions. The solution has singularities both for
large and small values of the non-dimensional radial

coordinate; and these must be described analytically
with coordinate expansions to obtain the numerical

solution. The analytical near source description
involves constants, already identi®ed by Hieber and
Gebhart [8], that must be obtained, together with the

numerical solution, in terms of the Prandtl number.
The far ®eld includes a slender plume above the

point source, driven by the buoyancy forces, and an

outer irrotational ¯ow, where T=T1, due to the
entrainment ¯ow generated by the plume. The far ®eld

is the same for the free convection ¯ow around heated
bodies when the Grashof number is of order unity,
determined again by Q, independently of the particle

size and shape. Thus, this far ®eld description will be
used, in Section 3, in our numerical analysis of the free
convection ¯ow around heated spheres.

The equations describing the ¯ow and temperature
®elds in the plume far above the particle can be simpli-

®ed using approximations of the boundary layer type,
and their asymptotic solution, as shown by Zeldovich
[11], is self-similar both in the laminar and turbulent

case, determined by the rate of heat loss Q from the
particle. The equations which describe the self-similar

asymptotic structure of the plume were obtained by
Yih [12], who showed that analytical solutions exist for
the values 1 and 2 of the Prandtl number, and numeri-

cally solved by Fujii [13]. The asymptotic structure for
Pr>>1 of the plume above a point source has been ana-
lysed recently by VaÂ zquez et al. [14]. Second-order

e�ects in an axisymmetric plume in an unbounded
¯uid and a ¯uid bounded by a ground plate were con-

sidered by Thomas and Takhar [15], and by Riley and
Drake [16] with an external co-¯owing uniform stream
for Pr=1.

Geoola and Cornish [17] obtained the numerical sol-
ution of the full steady Navier±Stokes equations to
calculate the natural convection heat transfer over a

sphere for Pr=0.72. However, the boundary condition,
c=0, used for the stream function at large values of

the radial coordinate does not correspond to the
steady solution in an unbounded environment. When
using this boundary condition an arti®cial recirculation

zone appears, which may in¯uence the heat transfer
from the sphere. Calculations using the full steady

Navier±Stokes equations with similar, arti®cial, bound-
ary conditions were also carried out by Jie and Gogos

[18]. Transient ¯ow calculations were carried out nu-
merically for Grashof numbers up to 105 by Geoola
and Cornish [19]. Riley [20] obtained transient numeri-

cal solutions for Pr=0.72 and Pr=7 in the range 102

R Gr R 104, and compared the heat transfer results
with those obtained from the boundary layer theory in

the high Grashof number limit.
The boundary conditions appropriate for the ¯ow

around the sphere in an unbounded ¯uid environment

must be based on the asymptotic description of the far
¯ow ®eld, as indicated above and used below, in
Section 3, in our numerical analysis of the laminar
¯ow around the sphere. The problem is posed so as to

®nd the surface temperature of the sphere that results
in a given heat ¯ux. The numerical calculations were
carried out for Pr=0.72 and Pr=7 for small and mod-

erate values of the Grashof number. The method of
matched asymptotic expansions is used in Section 3.2
to calculate the correction of the Nusselt number due

to free convection e�ects at Grashof numbers small
compared with unity. This is done by using the match-
ing conditions between the inner heat conduction

dominated solution and the outer solution due to a
point heat source.
The results of the asymptotic description for large

and small values of the Grashof number have been

used to propose a correlation of the Nusselt number
and Grashof numbers, valid for all values of Gr as
long as the boundary layer ¯ow is laminar.

2. Free convection from a point source of heat

2.1. Formulation

Consider a point source of heat of intensity Q in an

unbounded ¯uid with the temperature T1 at the in®n-
ity, and subject to the gravity ®eld ~g. The equations
that describe the ¯ow and temperature ®elds can be

simpli®ed to the Boussinesq form if the temperature
rise, TÿT1, is small compared with T1. The density
r, kinematic viscosity n, the thermal di�usivity a, and
the thermal expansion coe�cient b, equal to 1/T1 for

gases, are considered to be constant. Then, the velocity
~v, temperature T, and variation of pressure p ' from the
hydrostatic value satisfy the equations

r � ~v � 0, �1�

�~v � r�~v � ÿrp 0=rÿ ~gb�Tÿ T1� � nD~v, �2�

�~v � r�T � aDT: �3�
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Without an external forcing ¯ow, the free convection
¯ow due to a point source of heat will be axisymmetri-

cal around the vertical line through the point source.
If we use a system of spherical coordinates, the tem-
perature and ¯ow ®eld will depend only on the radial

coordinate r, measured from the point source, and the
angle y, measured from the vertical direction, opposite
to ~g.
To account for the point source of heat we require

lim
r40

2plr2
�p
0

@T

@r
sin y dy � ÿQ, �4�

where l is the thermal conductivity. For the pure point

source of heat there is no similar momentum source or
sink at r=0; however, we shall ®nd there a vertical
non-zero velocity, u0, induced by the buoyancy forces.

For a point heat source in an unbounded environment,
TÿT1 and the velocity ~v must tend to zero when r4
1, outside a slender vertical plume where the peak vel-

ocity will tend to a constant.
In the free convection problem formulated above,

the only parameters entering in the equations and
boundary conditions are the Prandtl number, Pr=n/a,
and the dimensional parameters gb, Q/l and a, which
de®ne the scales lh, vh and ThÿT1

lh � �a2l=Qbg�1=2, vh � �gbQ=l�1=2,

Th ÿ T1 � �Q3bg=a2l3�1=2
�5�

These are the characteristic values, respectively, of the
length of the heated region around the source and the
velocity and temperature rise above the ambient in this

region. If we use these scales, or the similar scales pro-
posed by Hieber and Gebhart [8], to write the
equations and boundary conditions in non-dimensional
form, we obtain

Vr

@t
@r
� Vy

r

@t
@y
� @ 2t
@r2
� 2

r

@t
@ r
� 1

r2
@ 2t

@y2
� ctgy

r2
@t
@y

, �6�

@

@ r
�VrO� � 1

r

@

@y
�VyO� � ÿ

�
@t
@y

cos y� r
@t
@ r

sin y

�

� Pr

�
@ 2O
@ r2
� 1

r2
@ 2O

@y2
� ctgy

r2
@O
@y
ÿ O

r2 sin2 y

�
,

�7�

@ 2c
@r2
� 1

r2
@c

@y2
ÿ ctgy

r2
@c
@y
� ÿO sin y, �8�

where t=(TÿT1)/(ThÿT1),

O � r
@Vy

@r
� Vy ÿ @Vr

@y
, Vr � 1

r2 sin y
@c
@y

,

Vy � ÿ 1

r sin y
@c
@r

,

�9�

c is the stream function, and O/r is the azymutal com-

ponent of the vorticity. Eqs. (6)±(8) are to be solved
for r>0 with the boundary conditions

t40, Vr and Vy40 at r41 �y 6� 0�, �10�

and the requirement that

lim
r40

�
4pr2

@t
@ r

�
� ÿ1, �11�

associated with the concentrated point heat source at

r=0. Only one parameter, namely the Prandtl number,
is left in the formulation (6)±(11).

2.2. Asymptotic steady solutions for small and large r

In the vicinity of the point source the temperature,
stream function and vorticity can be described by the

small r expansions

t � 1

4pr
� A0 � U0

8p
cos y�O�r�, �12�

c �
�
1

2
U0r

2 ÿ r3

32pPr

�
sin 2y�O�r4�, �13�

O � r

8pPr
sin y�O�r2�, �14�

which include solutions of the Stokes equations not

having a more singular behaviour than the solution, 1/
4pr, required by the point source of heat. The con-
stants appearing in the coordinate expansions (12)±

(14) must be determined as part of the numerical sol-
ution of the general point source problem. The con-
stant A0 determines the temperature level near the

source, the constant U0 measures the vertical velocity
of the ¯uid at the point source.
In the numerical solution we shall not use directly

(12)±(14) near the point source of heat, but use instead
the following weak form of the boundary conditions at
r=rmin<<1

r2
@t
@r
� 1

4p
� r

@c
@ r
ÿ 2c � Oÿ r

8pPr
sin y � 0, �15�

which are based on (13) and (14) but do not involve
unknown constants.

The stationary far ®eld associated with a point
source of heat, or any three-dimensional body, in an
unbounded stagnant environment includes a slender
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plume above the source, where the ¯ow and tempera-
ture can be described in ®rst approximation, for r>>1
and y0rÿ1/2, by

c � rF�z�, t � rÿ1G�z�, �16�

where the similarity variable, z=r 1/2y, is of order unity
in the plume. The well known equations determining

the thermal plume are

z
dG

dz
� ÿFG, �17�

Pr
1

z
d

dz

�
z

d

dz

�
1

z
dF

dz

��
� F

z
d

dz

�
1

z
dF

dz

�
� G � 0, �18�

to be solved, for z>0, with the boundary conditions

F � d

dz

�
1

z
dF

dz

�
� 0 at z � 0;

1

z
dF

dz
� 0 at

z41
�19�

In addition, the functions F and G must satisfy the

integral condition

2p
�1
0

�dF=dz�G dz � 1 �20�

stating that the heat transported upwards by the ¯ow

in the plume equals the heat leaving the source.
The numerical solution of the Eqs. (17)±(20) deter-

mines the value F(z )z41=F1 shown in Fig. 1 as a

function of the Prandtl number. The closed-form sol-
utions given by Yih [12] lead, for Pr=1 and 2, to the

values 6 and 8 of F1, shown in Fig. 1 with circles.
Shown in this ®gure with a dashed line is the asympto-
tic behaviour, F1=3.2Pr, obtained for Pr 41. The

values of the centre-line velocity, Ua=zÿ1(dF/dz )vz=0,
are also shown in Fig. 5 with a dashed line.
For large r, outside the thermal plume, T=T1, and

the ¯ow ®eld is described by (8) with O=0. As shown
by Schneider [21], the appropriate potential ¯ow sol-
ution for the stream function is

c � F1
2

r�1� cos y� �21�

corresponding to a semi-in®nite volumetric line sink in
an unbounded environment, of constant strength,

2pF1, above the point heat source. It is interesting to
observe that the radial velocity, Vr=ÿF1/2r, in the
irrotational region is independent of y.
At large values of r, r=rmax>>1, the stream function

can be represented by a composite expression, based
on the solutions for the plume and the irrotational

regions, as

cc � rmax

�
F�r1=2max y� �

1

2
F1�ÿ1� cos y�

�
�22�

The corresponding expressions for the temperature and
vorticity are given by (16), because in the inviscid

region both are equal to zero.
Notice that according to (21), c grows linearly with

r when r 4 1. If the condition c=0 is posed at a
®nite although large value of r, as it has been done

often in numerical descriptions of steady free convec-
tion ¯ows in unbounded ¯uids, an arti®cial recircu-
lation torus is generated, with a position depending on

the size of the computational domain. The boundary
condition c=0 at r41 can be used only during the
transient period following the time of introduction of

the source.
Using the expansion (22), the outer boundary,

r=rmax, is divided into in¯ow and out¯ow zones, with
negative and positive values of the radial velocity. The

dividing line, y=y�(rmax), is determined by the extre-
mum of c(rmax, y ).
The following boundary conditions were adopted at

r=rmax:

cÿ cc � O � t � 0, y > y�;

@ 2c
@r2
� @O
@r
� @t
@ r
� 0, y<y�

�23�

Fig. 1. Calculated values of F1 as a function of the Prandtl

number. CirclesÐthe values, 6 and 8, given by Yih [12] for

Pr=1 and 2. Dashed lineÐasymptotic behaviour, F1=3.2

Pr, obtained for Pr41.
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2.3. Numerical solution of the steady point source
problem

The vorticity transport and energy equations, written
in terms of lnr and y, were solved numerically, using

second order, three points, approximations for the ®rst
and second derivatives. To obtain stationary distri-

butions a pseudo unsteady form of the governing
equations was used. The equation for the stream func-

tion was solved iteratively introducing an arti®cial
time. Calculations were carried out using 101 � 101
and 151 � 151 points to test the grid dependence. It

was admitted that the stationary distribution had been
reached when maxi, jvfi, jÿfÃi, jv<10ÿ10, where f and fÃ are
the values of the current and previous time level, re-

spectively. The results of the calculations shows that

Fig. 2. Computed streamlines around the point source of heat (solid lines, c at intervals of 10) and isotherms (dashed lines, t at

intervals 0.001 and tmin=0.001). (a) Pr=0.1, (b) Pr=0.72, (c) Pr=7.

Fig. 3. Computed vertical velocity in the centre-line of the

plume for various Pr.

Fig. 4. Calculated values of the non-dimensional temperature

level as a function of the Prandtl number.
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the dependence of A0 and U0 on rmin and rmax disap-

pears when rmax>100 and rmin < 10ÿ3 in the range,
between 0.1 and 10, of the Prandtl numbers considered
in the calculations.

Typical results from the computations for stream-
lines and isotherms are shown in Fig. 2(a)±(c) with
solid and dashed lines, respectively. These ®gures illus-

trate the changes in ¯ow structure with increasing
values of the Prandtl number. The velocity distribution
along the vertical axis is shown in Fig. 3 for various
values of Pr. The values of A0 and U0, depending on

the Prandtl number, are plotted in Figs. 4 and 5 with
solid lines. The asymptotic value Ua of the vertical vel-
ocity in the plume is also shown in Fig. 5 with dashed

lines. Shown also in Fig. 5 with circles is the asympto-
tic formula Ua � �0:38� 0:67

����������
lnPr
p �= �����������

2pPr
p

, proposed
by VaÂ zquez et al. [14] for Pr>>1 for the velocity in the

centre line of the plume, measured with our scale vh.
One can see that the di�erence between U0 and Ua

tends to zero when Pr41, and that the value of the
velocity above the point source is nearly constant

along the vertical axis.

3. Steady free convection heat transfer from spheres at

small Grashof numbers

3.1. Formulation and numerical description for Gr01

In this section we consider the steady laminar free
convection around a sphere, posing the problem of

®nding the uniform value of the surface temperature

leading to a given rate Q of heat loss. The description
will be carried out using the non-dimensional
Boussinesq Eqs. (6)±(8), based on the scales lh, vh and

ThÿT1, de®ned in (5), to be solved numerically with
the following boundary conditions at the sphere sur-
face, r=E=a/lh,

~v � 0, 2p
�p
0

r2
@t
@r jr�E sin y dy � ÿ1, t � tp: �24�

The value of the non-dimensional surface temperature,
tp=(TpÿT1)/(ThÿT1), assumed to be uniform, has to
be determined as part of the solution as a function of E
and Pr. Then, we obtain in parametric form the re-
lation between the Nusselt and Grashof numbers,
de®ned by

Nu � Q

2pla�Tp ÿ T1� �
1

2ptpE
,

Gr � bga3�Tp ÿ T1�
n2

�25�

The parametric representation for a given value of the
Prandtl number is based on the non-dimensional
radius of the sphere

E � a=lh � �2pNuGrPr2�1=2: �26�

Fig. 5. Computed values of the point source velocity U0 (solid

line) and the far ®eld velocity Ua (dashed line) in the centre-

line of the plume. CirclesÐthe ®tting formula for this velocity

proposed for large Prandtl numbers by VaÂ zquez et al. [14].
Fig. 6. Computed streamlines around the sphere for E=1 and

Pr=0.72 (solid lines) and normalized isotherms, ~t � t=tp

(dashed lines, ~t at intervals of 0.2, ~tmin =0.1).
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In the limit Gr4 0, it appears that the free convection

e�ects on heat transfer become negligible, tp4 1/(4pE )
and Nu=2, in ®rst approximation; while the ¯ow vel-
ocities are of order E when measured with a/a.
Calculations were carried out for a wide range of Gr

down to 10ÿ4. Fig. 6 presents the computed isotherms
and isolines of the stream function obtained for E=1

and Pr=0.72. The resulting values of the mean
Nusselt number as a function of the Grashof number
are shown in Fig. 7 with circles for Pr=0.72 and

Pr=7.

3.2. Steady heat transfer at Gr<<1 and correlation
formula

For values of Gr<<1, and Pr=O(1), E=a/lh<<1;
then, two regions are found in the ¯ow and tempera-

ture ®elds, with disparate scales lh and a. In the outer
region, with the scale lh, the ¯ow can be approximated,
in ®rst approximation, by the ¯ow induced by a point

source with the strength Q. In the inner region near
the sphere, scaled with its radius a, the ¯ow can be
described, in ®rst approximation, by the stream func-

tion

c � 1

2
U0

�
r2 ÿ 3

2
Er� 1

2

E3

r

�
sin 2 y, �27�

the solution of the Stokes equations associated with

the free convection ¯ow velocity U0 induced at the
point source. The corresponding solution of the tem-
perature equation, for r0E, E<<1, is of the form

t � 1

4pr
� B0 � U0

8p

�
1ÿ 3

2

E
r
� 3

4

E2

r2
ÿ 1

4

E3

r3

�
cos y

� . . . �28�

The requirement that (28) and (12) coincide in the in-
termediate region E<<r<<1 leads to B0=A0. Thus, the
following relation is obtained:

tp � 1=�4pE� � A0 �29�

The ®rst term 1/4pE in (29) corresponds to pure heat
conduction, determining the surface temperature in
terms of the rate of heat loss by the sphere. The nega-

tive correction A0 corresponds to an apparent shift
(ThÿT1)A0, due to free convection, of the temperature
of the environment seen by the sphere. Using (29) with

(25) and (26) the following is obtained:

Nu � 2

1� 4pA0E
� 2� C�Pr�Gr1=2, Gr40 �30�

where C(Pr )=ÿ16p 3/2PrA0(Pr ) is shown in Fig. 8 by
a solid line. The small value of A0 is compensated by

the factor 16p 3/2, so the values of C(Pr ) are of order
unity when Pr=O(1). For Pr41 the function C(Pr )
can be correlated by C=0.474Pr+0.95, shown in Fig.

8 with a dashed line. This asymptotic relation (30)
allows Nu as a function of Gr in the limit of small
Grashof numbers to be calculated.

At large Grashof numbers the relation between Nu
and Gr takes the well known asymptotic form

Nu=�PrGr�1=4 � B�Pr� �31�

Fig. 7. Average Nusselt number as a function of Gr for

Pr=0.72 and 7: circlesÐnumerical results; solid linesÐcorre-

lation formula (32); dashed linesÐasymptotic behaviour (30)

for small Gr.

Fig. 8. Calculated values of C(Pr ) as a function the Prandtl

number (solid line); dashed lineÐcorrelation formula

C=0.474Pr+0.95.
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written in the form appropriate for the limit Pr41,
when B4 0.98 as calculated by Acrivos [3], and shown
in Fig. 9 with a dashed line. To calculate B for

Pr=0.72, Potter and Riley [4] integrated numerically
the corresponding boundary layer equations in y from
p up to 0.12, and extrapolated the local rate of heat
transfer up to y=0. Our calculated values of B as a

function of the Prandtl number are shown in Fig. 9
where the boundary layer equations were integrated up
to y=0.14, and then used the same method of the

extrapolation of the local heat transfer rate up to y=0.
The value, corresponding to B=0.76, calculated by
Potter and Riley for Pr=0.72, is shown with a circle.

To obtain a correlation formula for the Nusselt
number, valid for the steady laminar free convection
¯ow for all Grashof numbers, the following expression

is used:

Nu � 2� C�Pr�Gr1=2
1� s0Gr1=8 � s1Gr1=4

, �32�

which coincides with [30] for Gr4 0 and with (31) for

Gr41 if s1=C(Pr )/B(Pr ). The adjustable parameter
s0 is chosen as ÿ0.32 and ÿ0.52 for Pr=0.72 and
Pr=7, respectively. The resulting Nusselt numbers,

shown in Fig. 7 with solid lines, correlate the values
obtained from our numerical calculations with errors
lower than 1.5%.

4. Conclusions

The main aim of the work presented in this paper is
to provide the description of the steady laminar free

convection ¯ow and heat transfer from heated spheres
at small Grashof numbers. As in the analysis of the
free convection ¯ow due to thin heated wires, see

LinÄ aÂ n and Kurdyumov [10], the problem is posed as to
®nd the uniform temperature, Tp, of a sphere leading

to a given rate Q of heat loss to the ¯uid. The govern-
ing Boussinesq equations were written in non-dimen-
sional form using the scales given by (5), and only the

Prandtl number and the value of the non-dimensional
radius of the sphere, E=a/lh, were left as parameters in
the non-dimensional formulation, which can be used

for the numerical description for all values of the
Grashof number.

For values of Gr<<1 the corresponding values of
E=a/lh are also small compared with unity, if Pr01.
Then, two regions in the ¯ow ®eld were found, with

disparate scales lh and a. In the outer region, with
scale lh, the ¯ow and temperature ®elds correspond, in

®rst approximation, to those associated with a pure
point source of heat at the centre of the sphere, with a
strength corresponding to the rate of heat lost Q by

the sphere. The description of these ®elds is given in
Section 2, based on the Boussinesq approximate form
of the complete conservation equations, which involve

the Prandtl number as the only parameter. As part of
the solution the free convection velocity U0 at the

source was obtained and the parameter A0 characteriz-
ing the temperature level near the source.
U0 can be used to describe the ¯ow ®eld in the inner

region around the sphere, where the equations can be
simpli®ed to the Stokes equations. The Stokes drag,

6prnavhU0, should be included as a point sink of
momentum for a better description of the ¯ow ®eld in
the outer region. However, this momentum sink is

small, by a factor of the order EPr, when compared
with the characteristic momentum ¯ux rv 2hl

2
h=ra 2 in

the outer region r0 lh, and thus can be neglected for

E<<1.
The value of A0 was used, together with the match-

ing conditions with the analytical solution for the
inner region around the sphere, to calculate for Gr<<1
the correction of the Nusselt number from its pure

heat conduction value Nu=2. This correction, given
by the factor (1+4pA0E )

ÿ1, corresponds to an appar-

ent shift, A0(ThÿT1), of the temperature of the en-
vironment seen by the sphere. To obtain the
corrections of the Nusselt number due to free convec-

tion at Gr<<1 for particles of non-spherical shape, the
pure heat conduction equation needs to be solved
changing the far ®eld temperature T1 by

T1+A0(ThÿT1), because the far ®eld at Gr<<1 is
determined by Q independently of the particle shape.

Fig. 9. Calculated values of the constant B in the large

Grashof number description (31); dashed lineÐasymptotic

value, 0.98, for Pr41, obtained by Acrivos [3]; circleÐthe

value 0.765, calculated by Potter and Riley [4] for Pr=0.72.
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Numerically the complete Boussinesq equations were

solved, for Pr=0.72 and Pr=7, for heated spheres

with di�erent values of the non-dimensional radius E;
the Nusselt number was thus calculated for a wide

range of Grashof numbers. Using the results of these

calculations, together with the asymptotic expressions

(30) and (31) for small and large values of the Grashof

number, a correlation formula (32) applicable for all

Grashof numbers is suggested.

The scales used in this analysis correspond to those

applicable to values of the Prandtl number of order

unity or small compared with unity. In these cases, the

appropriate parameter that characterizes the size of the

heated region surrounding the sphere is GrPr 2, and in

the limit Pr4 0 the Nusselt number should be a func-

tion only of this parameter. In this limit, the viscous

e�ects enter only in a boundary layer and a plume,

which are very thin compared with the heated region

and the thermal plume.

The cases with Pr>>1 deserve particular attention

and therefore these are considered in the Appendix.

For values of the Rayleigh number, Ra=GrPr, small

compared with unity the size of the heated region

around the sphere is much smaller than the size of the

region where viscous transport of momentum is im-

portant; at small values of the Rayleigh number, this

momentum is generated by the buoyancy forces acting

on the slender plume above the sphere. The structures

of the thermal plume and of the much larger surround-

ing region of viscous transport of momentum are

determined by the heat released by the sphere, which

appears as a point source of heat. The order of magni-

tude estimates, given in the Appendix, and the results

of the numerical calculations, indicate that the ratio

between the value, u0, of the velocity in the point

source, and the value, ua, of the centre-line velocity in

the plume, tends to 0 when Pr41. The approximate

formula, proposed by VÂ azquez et al. [14], for the

centre-line velocity in the plume can be used to esti-

mate the e�ective Peclet number, s=O(Ra 1/2), of the

corresponding forced ¯ow around the heated sphere.

When the Rayleigh number grows to values of order

unity the Nusselt number increases signi®cantly above

2, the heat conduction value, because the size of the

heated region surrounding the sphere is of order a. In

this paper this regime is not analysed, Ra01, of tran-

sition to the boundary layer regime analysed, for

Pr>>1 and Ra>>1, by Acrivos [3].

Although it may be expected that (ThÿT1)/T1 is

small compared with unity for Gr<<1, and, then, the

Boussinesq approximation will be justi®ed in the outer

region, when (TpÿT1)/T1 is of order unity, this needs

to be accounted, and this is easy to do, for the vari-

ation of the heat conduction with temperature in the

heat conduction dominated inner region.
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Appendix A

Free convection from a sphere at large Prandtl numbers

For values of Pr>>1, the size l 'h of the heated region

around sphere, or heat source, will be small compared
with the much larger size lv of the region where viscous
transport of momentum is important. We shall begin
by giving estimates of these lengths for the point heat

source, and we shall indicate, afterwards, how the ¯ow
and temperature ®elds around a sphere depend on the
ratios a/l 'h and a/lv.

In free convection ¯ows at Pr>>1, as it was the case
for the line source of heat analysed by LinÄ aÂ n and
Kurdyumov [10], the heated region around the source

is continued above by a thermal plume of thickness
dT<<lv. This plume and the viscous region around the
sphere are continued above by a slender plume where

the ¯ow, at distances z>>lv, is self-similar as described
in Section 2.2, and for large Pr by VaÂ zquez et al. [14].
The buoyancy forces in the thermal plume are

balanced by viscous stresses that extend outwards to

the viscous region, driving there the ¯ow with vel-
ocities of order uv, such that

uvlv=n � 1 �A1�

The equations describing the ¯ow in the thermal
plume, written in cylindrical coordinates (z, R ), can be

simpli®ed to the form

@Ru

@z
� @Rv
@R
� 0 �A2�

0 � gb�Tÿ T1� � n
1

R

@

@R

�
R
@u

@R

�
�A3�

u
@T

@z
� v

@T

@R
� n

Pr

1

R

@

@R

�
R
@T

@R

�
�A4�

where, because dT/lv<<1, the boundary layer approxi-
mation is justi®ed and the convective terms in the
momentum equation can be neglected.
From the energy equation the following is obtained�1

0

rcpu�Tÿ T1�2pR dR � Q, �A5�

while the momentum equation can be integrated across
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the thermal plume to yield�
R
@u

@R

�
de

� ÿ
�1
0

�gb=n��Tÿ T1�R dR �A6�

determining the viscous stresses at the outer edge de of
the thermal plume.
If it is anticipated that the variation of u across the

thermal plume is of the order uv, moderately small
compared with the centre-line velocity uc, so that u can
be approximated by uc in (A5), then (A6) takes the

form�
R
@u

@R

�
de

� gb
n

Q

2prcpuc

�A7�

This equation is applicable at radial distances such

that dT<<R<<lv, where

uÿ uc � ÿ�gbQ=2prcpnuc��ln R� c�: �A8�

The matching conditions with the solution for the
inner thermal plume, where u=uc in ®rst approxi-

mation, determines c=ÿln dT. By matching the sol-
ution for the outer viscous region, at R0lv where u0
uv, it follows that

gbQ=2prcpnuc � uv �A9�

and

uv ln�lv=dT� � uc �A10�

An additional relation between dT, lv and uc comes

from the required balance in the energy equation of
convection and radial conduction of heat, so that

dT �
�������������
alv=uc

p
�A11�

The relations (A1), (A10) and (A11) determine the
scale ratios

lv=dT �
����������������
Pruc=uv

p
uc=uv � ln

����������������
Pruc=uv

p
�A12�

Notice that (A12) gives directly uc/uv in terms of Pr,
and when used with (A9) the following is obtained

uc � f�gbQ=2plPr� ln
����������������
Pruc=uv

p
g1=2

� �vh=
�����������
2pPr
p

�fln
����������������
Pruc=uv

p
g1=2 �A13�

to calculate the characteristic vertical velocity in the

plume. This result of the order of magnitude analysis
is to be compared with the correlation proposed by
VaÂ zquez et al. [14] of their numerical results for the

peak velocity, ua, in the self-similar plume; the factor
fln ����������������

Pruc=uv

p g1=2 is replaced by the factor f0:37�
0:67

����������
ln Pr
p g in the correlation.

In the thermal plume, the vertical and transverse
variations of the velocity from uc are moderately small,

of order uv, so that the velocity u0 induced at the
source is u0=uc, given by (A12) and (A13).
This estimate can be used to calculate the size l 'h of

the heated region around the heat source, given by

ucl
0
h=a � 1, �A14�

so that l 'h/lv=uv/ucPr, which is equal to 1/Pr aside

from the moderately small factor uv/uc.
The order of magnitude estimates given above, and

the results of the numerical calculations, show that the
ratios of u0 and ua to uc tend to 0 when Pr 41, so

that the assumption u0=ua, used by Fendell [7] in his
analysis of the free convection heat transfer from
spheres, is justi®ed for large Prandtl numbers, and it

can be written

u0 ' ua ' uc ' �vh=
�����������
2pPr
p

�fln
����������������
Pruc=uv

p
g1=2 �A15�

For reasonably large Pr, the non-dimensional velocity
U0=u0/vh is still considered of order unity

and approximated, with high accuracy, by the
formula proposed by VaÂ zquez et al. [14],
Ua � �0:38� 0:67

����������
ln Pr
p �= �����������

2pPr
p

, shown in Fig. 5 with
circles.

For the free convection ¯ow around heated spheres
the structure of the thermal plume and of the viscous
region around the sphere will correspond to that of a

point source of heat, if the sphere radius is small com-
pared with l 'h. This is so in the distinguished limiting
case, when a/l 'h or, equivalently, when the Peclet num-

ber s=u0a/a, which is O� ������
Ra
p �, is of order unity. In

this case the ¯ow ®eld in the heated region around the
sphere, of size of order a, can be described by the

small Reynolds number ¯ow ®eld due to the velocity
u0 induced at the point source by the buoyancy forces
acting in the thermal plume, but also in¯uenced by the
buoyancy forces acting in the inner region. In this

regime, s of order unity, which is not analysed in this
paper, the Nusselt number rises above its heat conduc-
tion value 2 by an amount of order unity. It is easy to

show that for values of s<<1, Nuÿ2=s. For values of
s>>1 the heated region around the sphere shrinks to a
thin boundary layer, where the buoyancy forces are

balanced by the viscous forces. Then, the analysis of
Acrivos [3] applies, leading to the relation
Nu=0.98Ra 1/4 between Nu and the Rayleigh number
Ra=GrPr.
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